Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106.443
Filter
1.
BMC Public Health ; 24(1): 1283, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730396

ABSTRACT

BACKGROUND: Although prior studies have demonstrated that children with high levels of fundamental movement skill (FMS) are more active throughout the day, little is known about children's FMS and their physical activity (PA) during different segments of the school day (e.g., recess, lunch break, and physical education). The present study focused on FMS and moderate-to-vigorous PA (MVPA) during school day and identifies the association between children's FMS and MVPA during different segments of the school day in China. METHODS: A total of 322 children (boys n = 163, girls n = 159; Mage = 8.12, SD = 1.22 years) from four elementary schools involved in this study. Children's FMS and MVPA were measured using the Test of Gross Motor Development-2nd edition (TGMD-2) and hip-mounted accelerometers. Data such as height, weight, and socio-economic status (SES) were also obtained. Multilevel mixed regression models were used to examine the cross-sectional associations between FMS and MVPA. Models were adjusted for gender, age, standardized body mass index, and SES. RESULTS: Children engaged in 32.19 min of MVPA during the whole school day. Boys were more active than girls and had higher object-control skills competency. Locomotor skills were positively associated with children's long recess (B = 1.063) and short recess time (B = 1.502) MVPA. Object-control skills were positively correlated with children's MVPA time during long recess (B = 1.244) and physical education (PE) lessons (B = 1.171). CONCLUSION: The findings highlight the importance of developing both locomotor and object-control skills in elementary schools to lead more MVPA engagement during different segments of the school day.


Subject(s)
Motor Skills , Schools , Humans , Female , Male , Child , China , Motor Skills/physiology , Cross-Sectional Studies , Exercise , Accelerometry , Motor Activity/physiology , Physical Education and Training
2.
PLoS One ; 19(5): e0300227, 2024.
Article in English | MEDLINE | ID: mdl-38696419

ABSTRACT

Aging is associated with a wide range of physiological and behavioral changes in many species. Zebrafish, like humans, rodents, and birds, exhibits gradual senescence, and thus may be a useful model organism for identifying evolutionarily conserved mechanisms related to aging. Here, we compared behavior in the novel tank test of young (6-month-old) and middle aged (12-month-old) zebrafish from two strains (TL and TU) and both sexes. We find that this modest age difference results in a reduction in locomotor activity in male fish. We also found that background strain modulated the effects of age on predator avoidance behaviors related to anxiety: older female TL fish increased bottom dwelling whereas older male TU fish decreased thigmotaxis. Although there were no consistent effects of age on either short-term (within session) or long-term (next day) habituation to the novel tank, strain affected the habituation response. TL fish tended to increase their distance from the bottom of the tank whereas TU fish had no changes in bottom distance but instead tended to increase thigmotaxis. Our findings support the use of zebrafish for the study of how age affects locomotion and how genetics interacts with age and sex to alter exploratory and emotional behaviors in response to novelty.


Subject(s)
Aging , Zebrafish , Animals , Zebrafish/physiology , Female , Male , Aging/physiology , Behavior, Animal/physiology , Locomotion/physiology , Motor Activity/physiology , Exploratory Behavior/physiology
3.
Ecol Evol Physiol ; 97(2): 97-117, 2024.
Article in English | MEDLINE | ID: mdl-38728689

ABSTRACT

AbstractHow traits at multiple levels of biological organization evolve in a correlated fashion in response to directional selection is poorly understood, but two popular models are the very general "behavior evolves first" (BEF) hypothesis and the more specific "morphology-performance-behavior-fitness" (MPBF) paradigm. Both acknowledge that selection often acts relatively directly on behavior and that when behavior evolves, other traits will as well but most with some lag. However, this proposition is exceedingly difficult to test in nature. Therefore, we studied correlated responses in the high-runner (HR) mouse selection experiment, in which four replicate lines have been bred for voluntary wheel-running behavior and compared with four nonselected control (C) lines. We analyzed a wide range of traits measured at generations 20-24 (with a focus on new data from generation 22), coinciding with the point at which all HR lines were reaching selection limits (plateaus). Significance levels (226 P values) were compared across trait types by ANOVA, and we used the positive false discovery rate to control for multiple comparisons. This meta-analysis showed that, surprisingly, the measures of performance (including maximal oxygen consumption during forced exercise) showed no evidence of having diverged between the HR and C lines, nor did any of the life history traits (e.g., litter size), whereas body mass had responded (decreased) at least as strongly as wheel running. Overall, results suggest that the HR lines of mice had evolved primarily by changes in motivation rather than performance ability at the time they were reaching selection limits. In addition, neither the BEF model nor the MPBF model of hierarchical evolution provides a particularly good fit to the HR mouse selection experiment.


Subject(s)
Selection, Genetic , Animals , Mice , Biological Evolution , Running/physiology , Running/psychology , Behavior, Animal/physiology , Male , Female , Motor Activity/physiology , Physical Conditioning, Animal/physiology
4.
J Neuroimmunol ; 390: 578341, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38613873

ABSTRACT

Maternal allergic asthma (MAA) during pregnancy has been associated with increased risk of neurodevelopmental disorders in humans, and rodent studies have demonstrated that inducing a T helper-2-mediated allergic response during pregnancy leads to an offspring behavioral phenotype characterized by decreased social interaction and increased stereotypies. The interleukin (IL)-4 cytokine is hypothesized to mediate the neurobehavioral impact of MAA on offspring. Utilizing IL-4 knockout mice, this study assessed whether MAA without IL-4 signaling would still impart behavioral deficits. C57 and IL-4 knockout female mice were sensitized to ovalbumin, exposed to repeated MAA inductions, and their offspring performed social, cognitive, and motor tasks. Only C57 offspring of MAA dams displayed social and cognitive deficits, while IL-4 knockout mice showed altered motor activity compared with C57 mice. These findings highlight a key role for IL-4 signaling in MAA-induced behavioral deficits and more broadly in normal brain development.


Subject(s)
Asthma , Interleukin-4 , Mice, Inbred C57BL , Mice, Knockout , Prenatal Exposure Delayed Effects , Animals , Female , Mice , Pregnancy , Asthma/immunology , Asthma/genetics , Interleukin-4/genetics , Interleukin-4/deficiency , Prenatal Exposure Delayed Effects/immunology , Behavior, Animal/physiology , Male , Ovalbumin/toxicity , Social Behavior , Motor Activity/physiology
5.
J Exp Psychol Hum Percept Perform ; 50(6): 626-635, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38635224

ABSTRACT

Intentional binding refers to the subjective temporal compression between a voluntary action and its subsequent sensory outcome. Despite some studies challenging the link between temporal compression and intentional action, intentional binding is still widely used as an implicit measure for the sense of agency. The debate remains unsettled primarily because the experimental conditions used in previous studies were confounded with various alternative causes for temporal compression, and action intention has not yet been tested comprehensively against all potential alternative causes in a single study. Here, we solve this puzzle by jointly comparing participants' estimates of the interval between three types of triggering events with comparable predictability-voluntary movement, passive movement, and external sensory event-and an external sensory outcome (auditory or visual across experiments). The results failed to show intentional binding, that is, no shorter interval estimation for the voluntary than the passive movement conditions. Instead, we observed temporal (but not intentional) binding when comparing both movement conditions with the external sensory condition. Thus, temporal binding appears to originate from sensory integration and temporal prediction, not from action intention. As such, these findings underscore the need to reconsider the use of "intentional binding" as a reliable proxy of the sense of agency. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Subject(s)
Intention , Psychomotor Performance , Time Perception , Humans , Adult , Young Adult , Male , Female , Time Perception/physiology , Psychomotor Performance/physiology , Auditory Perception/physiology , Visual Perception/physiology , Motor Activity/physiology
6.
CNS Neurosci Ther ; 30(4): e14672, 2024 04.
Article in English | MEDLINE | ID: mdl-38644561

ABSTRACT

AIMS: Motor abnormalities have been identified as one common symptom in patients with generalized tonic-clonic seizures (GTCS) inspiring us to explore the disease in a motor execution condition, which might provide novel insight into the pathomechanism. METHODS: Resting-state and motor-task fMRI data were collected from 50 patients with GTCS, including 18 patients newly diagnosed without antiepileptic drugs (ND_GTCS) and 32 patients receiving antiepileptic drugs (AEDs_GTCS). Motor activation and its association with head motion and cerebral gradients were assessed. Whole-brain network connectivity across resting and motor states was further calculated and compared between groups. RESULTS: All patients showed over-activation in the postcentral gyrus and the ND_GTCS showed decreased activation in putamen. Specifically, activation maps of ND_GTCS showed an abnormal correlation with head motion and cerebral gradient. Moreover, we detected altered functional network connectivity in patients within states and across resting and motor states by using repeated-measures analysis of variance. Patients did not show abnormal connectivity in the resting state, while distributed abnormal connectivity in the motor-task state. Decreased across-state network connectivity was also found in all patients. CONCLUSION: Convergent findings suggested the over-response of activation and connection of the brain to motor execution in GTCS, providing new clues to uncover motor susceptibility underlying the disease.


Subject(s)
Brain , Magnetic Resonance Imaging , Rest , Seizures , Humans , Male , Female , Adult , Brain/physiopathology , Brain/diagnostic imaging , Rest/physiology , Young Adult , Seizures/physiopathology , Seizures/diagnostic imaging , Middle Aged , Brain Mapping , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging , Anticonvulsants/therapeutic use , Anticonvulsants/pharmacology , Adolescent , Motor Activity/physiology , Motor Activity/drug effects
7.
Brain Res ; 1834: 148904, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38561086

ABSTRACT

1-(Phenylselanyl)-2-(p-tolyl)indolizine (MeSeI) is a selenoindolizine with an antidepressant-like effect in mice by regulation of the serotonergic system. This study investigated the involvement of dopaminergic and noradrenergic systems in the antidepressant-like action of MeSeI. For this purpose, Swiss male mice were pretreated with different antagonists, after 15 min, the MeSeI was administrated by intragastric (i.g.) via; after 30 min, the mouse behavior was assessed in the forced swimming test (FST). The action of MeSeI on the activity of monoamine oxidase (MAO) was determined. The pretreatment of mice with haloperidol (0.05 mg/kg, intraperitoneally, i.p.; non-selective dopamine receptor antagonist), sulpiride (50 mg/kg, i.p.; D2 receptor antagonist), yohimbine (1 mg/kg, i.p.; α2 receptor antagonist), and propranolol (2 mg/kg, i.p.; non-selective ß receptor antagonist), inhibited the anti-immobility action of MeSeI (50 mg/kg, i.g.) in the FST. This blocking effect was not observed when SCH23390 (0.01 mg/kg, i.p.; D1 receptor antagonist), and prazosin (1 mg/kg, i.p.; α1 receptor antagonist) were administered. The coadministration of subeffective doses of bupropion (3 mg/kg. i.g.; dopamine and noradrenaline reuptake inhibitor) and MeSeI (0.5 mg/kg. i.g.) reduced the immobility time in the FST. Furthermore, MeSeI inhibited MAO-A and B activities in vitro and ex vivo tests. These results suggest that MeSeI exerts its antidepressant-like effect via regulation of the D2, α2, and ß1 receptors and the inhibition of MAO-A and B activities. Molecular docking investigations corroborated these results. This study provides comprehensive insights into the antidepressant-like mechanism of MeSeI in mice, suggesting its potential as a novel antidepressant candidate.


Subject(s)
Antidepressive Agents , Dopamine , Monoamine Oxidase , Organoselenium Compounds , Animals , Male , Mice , Antidepressive Agents/pharmacology , Organoselenium Compounds/pharmacology , Monoamine Oxidase/metabolism , Monoamine Oxidase/drug effects , Dopamine/metabolism , Dopamine Antagonists/pharmacology , Swimming , Norepinephrine/metabolism , Receptors, Dopamine/metabolism , Receptors, Dopamine/drug effects , Depression/drug therapy , Depression/metabolism , Motor Activity/drug effects
8.
Prog Neurobiol ; 236: 102611, 2024 May.
Article in English | MEDLINE | ID: mdl-38604583

ABSTRACT

Classical studies suggest that the anterior intraparietal area (AIP) contributes to the encoding of specific information such as objects and actions of self and others, through a variety of neuronal classes, such as canonical, motor and mirror neurons. However, these studies typically focused on a single variable, leaving it unclear whether distinct sets of AIP neurons encode a single or multiple sources of information and how multimodal coding emerges. Here, we chronically recorded monkey AIP neurons in a variety of tasks and conditions classically employed in separate experiments. Most cells exhibited mixed selectivity for observed objects, executed actions, and observed actions, enhanced when this information came from the monkey's peripersonal working space. In contrast with the classical view, our findings indicate that multimodal coding emerges in AIP from partially-mixed selectivity of individual neurons for a variety of information relevant for planning actions directed to both physical objects and other subjects.


Subject(s)
Macaca mulatta , Parietal Lobe , Psychomotor Performance , Visual Perception , Animals , Parietal Lobe/physiology , Psychomotor Performance/physiology , Visual Perception/physiology , Male , Neurons/physiology , Motor Activity/physiology
9.
Behav Brain Res ; 467: 114991, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38614209

ABSTRACT

Stroke is a leading cause of death and disability in the United States. Most strokes are ischemic, resulting in both cognitive and motor impairments. Animal models of ischemic stroke such as the distal middle cerebral artery occlusion (dMCAO) and photothrombotic stroke (PTS) procedures have become invaluable tools, with their own advantages and disadvantages. The dMCAO model is clinically relevant as it occludes the artery most affected in humans, but yields variability in the infarct location as well as the behavioral and cognitive phenotypes disrupted. The PTS model has the advantage of allowing for targeted location of infarct, but is less clinically relevant. The present study evaluates phenotype disruption over time in mice subjected to either dMCAO, PTS, or a sham surgery. Post-surgery, animals were tested over 28 days on standard motor tasks (grid walk, cylinder, tapered beam, and rotating beam), as well as a novel odor-based operant task; the 5:1 Odor Discrimination Task (ODT). Results demonstrate a significantly greater disturbance of motor control with PTS as compared with Sham and dMCAO. Disruption of the PTS group was detected up to 28 days post-stroke on the grid walk, and up to 7 days on the rotating and tapered beam tasks. PTS also led to significant short-term disruption of ODT performance (1-day post-surgery), exclusively in males, which appeared to be driven by motoric disruption of the lick response. Together, this data provides critical insights into the selection and optimization of animal models for ischemic stroke research. Notably, the PTS procedure was best suited for producing disruptions of motor behavior that can be detected with common behavioral assays and are relatively enduring, as is observed in human stroke.


Subject(s)
Disease Models, Animal , Infarction, Middle Cerebral Artery , Mice, Inbred C57BL , Animals , Male , Infarction, Middle Cerebral Artery/physiopathology , Infarction, Middle Cerebral Artery/complications , Mice , Stroke/physiopathology , Stroke/complications , Motor Activity/physiology , Thrombotic Stroke , Female , Odorants , Discrimination, Psychological/physiology , Behavior, Animal/physiology , Ischemic Stroke/physiopathology
10.
Behav Pharmacol ; 35(4): 156-160, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38651975

ABSTRACT

Exposure to chronic caffeine during adolescence has been shown to produce decreased anxiety-like behaviors in rats as well as decreased immobility in the forced swim test (FST) suggesting an antidepressant-like effect. The effects of chronic caffeine on anxiety, however, have been found to be test-dependent and sexually dimorphic. In addition, decreased immobility in the FST has been argued to reflect a shift toward active coping behavior as opposed to an antidepressant-like effect. In order to further characterize the effects of adolescent caffeine exposure, the present experiment assessed the effects of caffeine on marble burying behavior in a two-zone marble burying task. There was no difference in the amount of time rats spent in the two zones failing to support a shift in coping strategy. Caffeine-exposed rats spent less time engaged in marble burying activity and buried slightly fewer marbles, suggesting an anxiolytic effect of caffeine. In addition, caffeine treated rats spent less time engaged in nondirected burying and slightly more time actively engaging with the marbles; however, these effects appeared to be sexually dimorphic as they were driven by larger changes in the females. Overall, these results support an anxiolytic effect of adolescent caffeine, with female behavior appearing to be more affected by caffeine than males.


Subject(s)
Anxiety , Behavior, Animal , Caffeine , Animals , Caffeine/pharmacology , Caffeine/administration & dosage , Male , Anxiety/drug therapy , Female , Rats , Behavior, Animal/drug effects , Central Nervous System Stimulants/pharmacology , Anti-Anxiety Agents/pharmacology , Rats, Sprague-Dawley , Motor Activity/drug effects
11.
Clinics (Sao Paulo) ; 79: 100359, 2024.
Article in English | MEDLINE | ID: mdl-38657346

ABSTRACT

OBJECTIVE: The aim of this study was to evaluate the GSH effect on functional and histological recovery after experimental spinal cord injury in rats. METHODS: Forty Wistar rats were subjected to spinal cord injury through the Multicenter Animal Spinal Cord Injury Study (MASCIS) Impactor system. The rats were sorted and divided into four groups, as follows: Group 1 ‒ Laminectomy and spinal cord injury; Group 2 ‒ Laminectomy, spinal cord injury and Saline Solution (SS) 0.9%; Group 3 ‒ Laminectomy, spinal cord injury, and GSH; and Group 4 ‒ lLaminectomy without spinal cord injury. GSH and SS were administered intraperitoneally. Groups 1 and 4 received no intervention. RESULTS: The rats were evaluated for locomotor function recovery at seven different times by the Basso, Beattie, and Bresnahan (BBB) scale on days 2, 7, 14, 21, 28, 35, and 42 after the spinal cord injury. On day 42, the rats were sacrificed to analyze the histological findings of the injured spinal cord. In the group submitted to GSH, our experimental study revealed better functional scores on the BBB scale, horizontal ladder scale, and cranial and caudal axon count. The differences found were statistically significant in BBB scores and axonal count analysis. CONCLUSION: This study demonstrated that using glutathione in experimental spinal trauma can lead to better functional recovery and improved axonal regeneration rate in Wistar rats submitted to experimental spinal cord injury.


Subject(s)
Disease Models, Animal , Glutathione , Rats, Wistar , Recovery of Function , Spinal Cord Injuries , Animals , Spinal Cord Injuries/physiopathology , Spinal Cord Injuries/pathology , Time Factors , Laminectomy , Male , Spinal Cord/pathology , Spinal Cord/physiopathology , Random Allocation , Rats , Axons/pathology , Locomotion/physiology , Reproducibility of Results , Motor Activity/physiology , Treatment Outcome
12.
Ann Clin Transl Neurol ; 11(5): 1097-1109, 2024 May.
Article in English | MEDLINE | ID: mdl-38590028

ABSTRACT

OBJECTIVE: Voluntary upper limb movements are an ecologically important yet insufficiently explored digital-motor outcome domain for trials in degenerative ataxia. We extended and validated the trial-ready quantitative motor assessment battery "Q-Motor" for upper limb movements with clinician-reported, patient-focused, and performance outcomes of ataxia. METHODS: Exploratory single-center cross-sectional assessment in 94 subjects (46 cross-genotype ataxia patients; 48 matched controls), comprising five tasks measured by force transducer and/or position field: Finger Tapping, diadochokinesia, grip-lift, and-as novel implementations-Spiral Drawing, and Target Reaching. Digital-motor measures were selected if they discriminated from controls (AUC >0.7) and correlated-with at least one strong correlation (rho ≥0.6)-to the Scale for the Assessment and Rating of Ataxia (SARA), activities of daily living (FARS-ADL), and the Nine-Hole Peg Test (9HPT). RESULTS: Six movement features with 69 measures met selection criteria, including speed and variability in all tasks, stability in grip-lift, and efficiency in Target Reaching. The novel drawing/reaching tasks best captured impairment in dexterity (|rho9HPT| ≤0.81) and FARS-ADL upper limb items (|rhoADLul| ≤0.64), particularly by kinematic analysis of smoothness (SPARC). Target hit rate, a composite of speed and endpoint precision, almost perfectly discriminated ataxia and controls (AUC: 0.97). Selected measures in all tasks discriminated between mild, moderate, and severe impairment (SARA upper limb composite: 0-2/>2-4/>4-6) and correlated with severity in the trial-relevant mild ataxia stage (SARA ≤10, n = 20). INTERPRETATION: Q-Motor assessment captures multiple features of impaired upper limb movements in degenerative ataxia. Validation with key clinical outcome domains provides the basis for evaluation in longitudinal studies and clinical trial settings.


Subject(s)
Ataxia , Upper Extremity , Humans , Female , Male , Middle Aged , Upper Extremity/physiopathology , Cross-Sectional Studies , Adult , Aged , Ataxia/physiopathology , Ataxia/diagnosis , Psychomotor Performance/physiology , Motor Activity/physiology , Severity of Illness Index
13.
BMC Public Health ; 24(1): 1080, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637757

ABSTRACT

Movement-related behaviors (physical activity [PA], sedentary behavior [SB], and sleep) and diet interact with each other and play important roles in health indicators in youth. This systematic review aimed to investigate how PA, SB, sleep, and diet cluster in youth by biological sex; and to examine which cluster are associated with health indicators. This study was registered in PROSPERO (number: CRD42018094826). Five electronic databases were assessed. Eligibility criteria allowed studies that included youth (aged 19 years and younger), and only the four behaviors {PA, SB, sleep, and diet (ultra-processed foods [UPF]; fruits and vegetables [FV])} analyzed by applying data-based cluster procedures. From 12,719 articles screened; 23 were included. Of these, four investigated children, and ten identified clusters by biological sex. Sixty-six mixed cluster were identified including, 34 in mixed-sex samples, 10 in boys and 11 in girls. The most frequent clusters in mixed-sex samples were "High SB UPF Low Sleep", "Low PA High SB Satisfactory Sleep", and "High PA". The main difference in profiles according to sex was that girls' clusters were characterized by high sleep duration, whereas boys' clusters by high PA. There were a few associations found between cluster types and health indicators, highlighting that youth assigned to cluster types with low PA exhibited higher adiposity. In conclusion, the youth presented a range of clusters of behaviors, typically exhibiting at least one unhealthy behavior. Similar patterns were observed in both sexes with the biggest difference in time of sleep for girls and PA for boys. These findings underscore the importance of intervention strategies targeting multiple behaviors simultaneously to enhance health risk profiles and indicators in children and adolescents.


Subject(s)
Diet , Exercise , Obesity , Sedentary Behavior , Adolescent , Child , Female , Humans , Male , Health Behavior , Motor Activity , Sleep
14.
Neurorehabil Neural Repair ; 38(5): 373-385, 2024 May.
Article in English | MEDLINE | ID: mdl-38572686

ABSTRACT

BACKGROUND: Knowing how impaired manual dexterity and finger proprioception affect upper limb activity capacity is important for delineating targeted post-stroke interventions for upper limb recovery. OBJECTIVES: To investigate whether impaired manual dexterity and finger proprioception explain variance in post-stroke activity capacity, and whether they explain more variance than conventional clinical assessments of upper limb sensorimotor impairments. METHODS: Activity capacity and hand sensorimotor impairments were assessed using clinical measures in N = 42 late subacute/chronic hemiparetic stroke patients. Dexterity was evaluated using the Dextrain Manipulandum to quantify accuracy of visuomotor finger force-tracking (N = 36), timing of rhythmic tapping (N = 36), and finger individuation (N = 24), as well as proprioception (N = 27). Stepwise multivariate and hierarchical linear regression models were used to identify impairments best explaining activity capacity. RESULTS: Dexterity and proprioceptive components significantly increased the variance explained in activity capacity: (i) Box and Block Test was best explained by baseline tonic force during force-tracking and tapping frequency (adjusted R2 = .51); (ii) Motor Activity Log was best explained by success rate in finger individuation (adjusted R2 = .46); (iii) Action Research Arm Test was best explained by release of finger force and proprioceptive measures (improved reaction time related to use of proprioception; adjusted R2 = .52); and (iv) Moberg Pick-Up test was best explained by proprioceptive function (adjusted R2 = .18). Models excluding dexterity and proprioception variables explained up to 19% less variance. CONCLUSIONS: Manual dexterity and finger proprioception explain unique variance in activity capacity not captured by conventional impairment measures and should be assessed when considering the underlying causes of post-stroke activity capacity limitations.URL: https://www.clinicaltrials.gov. Unique identifier: NCT03934073.


Subject(s)
Fingers , Proprioception , Stroke , Upper Extremity , Adult , Aged , Female , Humans , Male , Middle Aged , Fingers/physiopathology , Fingers/physiology , Motor Activity/physiology , Motor Skills/physiology , Paresis/physiopathology , Paresis/etiology , Proprioception/physiology , Stroke/physiopathology , Stroke/complications , Upper Extremity/physiopathology
15.
Exp Neurol ; 376: 114771, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38580154

ABSTRACT

Parkinson's disease (PD) rodent models provide insight into the relationship between nigrostriatal dopamine (DA) signaling and locomotor function. Although toxin-based rat models produce frank nigrostriatal neuron loss and eventual motor decline characteristic of PD, the rapid nature of neuronal loss may not adequately translate premotor traits, such as cognitive decline. Unfortunately, rodent genetic PD models, like the Pink1 knockout (KO) rat, often fail to replicate the differential severity of striatal DA and tyrosine hydroxylase (TH) loss, and a bradykinetic phenotype, reminiscent of human PD. To elucidate this inconsistency, we evaluated aging as a progression factor in the timing of motor and non-motor cognitive impairments. Male PINK1 KO and age-matched wild type (WT) rats were evaluated in a longitudinal study from 3 to 16 months old in one cohort, and in a cross-sectional study of young adult (6-7 months) and aged (18-19 months) in another cohort. Young adult PINK1 KO rats exhibited hyperkinetic behavior associated with elevated DA and TH in the substantia nigra (SN), which decreased therein, but not striatum, in the aged KO rats. Additionally, norepinephrine levels decreased in aged KO rats in the prefrontal cortex (PFC), paired with a higher DA levels in young and aged KO. Although a younger age of onset characterizes familial forms of PD, our results underscore the critical need to consider age-related factors. Moreover, the results indicate that compensatory mechanisms may exist to preserve locomotor function, evidenced by increased DA in the SN early in the lifespan, in response to deficient PINK1 function, which declines with aging and the onset of motor decline.


Subject(s)
Aging , Corpus Striatum , Dopamine , Protein Kinases , Substantia Nigra , Tyrosine 3-Monooxygenase , Animals , Tyrosine 3-Monooxygenase/metabolism , Protein Kinases/genetics , Protein Kinases/deficiency , Protein Kinases/metabolism , Substantia Nigra/metabolism , Aging/genetics , Male , Rats , Dopamine/metabolism , Corpus Striatum/metabolism , Motor Activity/physiology , Motor Activity/genetics , Rats, Transgenic
16.
Cell Mol Neurobiol ; 44(1): 39, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649645

ABSTRACT

Spinal-cord injury (SCI) is a severe condition that can lead to limb paralysis and motor dysfunction, and its pathogenesis is not fully understood. The objective of this study was to characterize the differential gene expression and molecular mechanisms in the spinal cord of mice three days after spinal cord injury. By analyzing RNA sequencing data, we identified differentially expressed genes and discovered that the immune system and various metabolic processes play crucial roles in SCI. Additionally, we identified UHRF1 as a key gene that plays a significant role in SCI and found that SCI can be improved by suppressing UHRF1. These findings provide important insights into the molecular mechanisms of SCI and identify potential therapeutic targets that could greatly contribute to the development of new treatment strategies for SCI.


Subject(s)
CCAAT-Enhancer-Binding Proteins , Spinal Cord Injuries , Ubiquitin-Protein Ligases , Animals , Spinal Cord Injuries/physiopathology , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Mice , CCAAT-Enhancer-Binding Proteins/metabolism , CCAAT-Enhancer-Binding Proteins/genetics , Motor Activity/physiology , Mice, Inbred C57BL , Recovery of Function/physiology , Female , Spinal Cord/metabolism , Spinal Cord/pathology , Gene Expression Regulation
17.
Behav Brain Res ; 466: 115000, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38631659

ABSTRACT

The brain serotonin (5-HT) system performs a neurotrophic function and supports the plasticity of the nervous system, while its age-related changes can increase the risk of senile neurodegeneration. Zebrafish brain is highly resistant to damage and neurodegeneration due to its high regeneration potential and it is a promising model object in searching for molecular factors preventing age-related neurodegeneration. In the present study alterations in 5-HT-related behavior in the home tank and the novel tank diving test, as well as 5-HT, 5-HIAA levels, tryptophan hydroxylase (TPH), monoamine oxidase (MAO) activity and the expression of genes encoding TPH, MAO, 5-HT transporter and 5-HT receptors in the brain of 6, 12, 24 and 36 month old zebrafish males and females are investigated. Marked sexual dimorphism in the locomotor activity in the novel tank test is revealed: females of all ages move slower than males. No sexual dimorphism in 5-HT-related traits is observed. No changes in 5-HT and 5-HIAA levels in zebrafish brain during aging is observed. At the same time, the aging is accompanied by a decrease in the locomotor activity, TPH activity, tph2 and htr1aa genes expression as well as an increase in the MAO activity and slc6a4a gene expression in their brain. These results indicate that the brain 5-HT system in zebrafish is resistant to age-related alterations.


Subject(s)
Aging , Brain , Hydroxyindoleacetic Acid , Monoamine Oxidase , Serotonin Plasma Membrane Transport Proteins , Serotonin , Sex Characteristics , Tryptophan Hydroxylase , Zebrafish , Animals , Serotonin/metabolism , Male , Female , Aging/metabolism , Aging/physiology , Brain/metabolism , Monoamine Oxidase/metabolism , Tryptophan Hydroxylase/metabolism , Tryptophan Hydroxylase/genetics , Hydroxyindoleacetic Acid/metabolism , Serotonin Plasma Membrane Transport Proteins/metabolism , Serotonin Plasma Membrane Transport Proteins/genetics , Motor Activity/physiology , Behavior, Animal/physiology , Receptors, Serotonin/metabolism , Receptors, Serotonin/genetics
18.
Behav Neurosci ; 138(2): 108-124, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38661670

ABSTRACT

The cannabinoid system is being researched as a potential pharmaceutical target for a multitude of disorders. The present study examined the effect of indirect and direct cannabinoid agonists on mesolimbic dopamine release and related behaviors in C57BL/6J (B6) mice. The indirect cannabinoid agonist N-arachidonoyl serotonin (AA-5-HT) indirectly agonizes the cannabinoid system by preventing the metabolism of endocannabinoids through fatty acid amide hydrolase inhibition while also inhibiting transient receptor potential vanilloid Type 1 channels. Effects of AA-5-HT were compared with the direct cannabinoid receptor Type 1 agonist arachidonoyl-2'-chloroethylamide (ACEA). In Experiment 1, mice were pretreated with seven daily injections of AA-5-HT, ACEA, or vehicle prior to assessments of locomotor activity using open field (OF) testing and phasic dopamine release using in vivo fixed potential amperometry. Chronic exposure to AA-5-HT did not alter locomotor activity or mesolimbic dopamine functioning. Chronic exposure to ACEA decreased rearing and decreased phasic dopamine release while increasing the dopaminergic response to cocaine. In Experiment 2, mice underwent AA-5-HT, ACEA, or vehicle conditioned place preference, then saccharin preference testing, a measure commonly associated with anhedonia. Mice did not develop a conditioned place preference or aversion for AA-5-HT or ACEA, and repeated exposure to AA-5-HT or ACEA did not alter saccharin preference. Altogether, the findings suggest that neither of these drugs induce behaviors that are classically associated with abuse liability in mice; however, direct cannabinoid receptor Type 1 agonism may play more of a role in mediating mesolimbic dopamine functioning than indirect cannabinoid agonism. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Subject(s)
Cannabinoid Receptor Agonists , Dopamine , Mice, Inbred C57BL , Animals , Dopamine/metabolism , Male , Mice , Cannabinoid Receptor Agonists/pharmacology , Serotonin/metabolism , Locomotion/drug effects , Behavior, Animal/drug effects , Arachidonic Acids/pharmacology , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Cocaine/pharmacology , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/metabolism , Motor Activity/drug effects
19.
PLoS Biol ; 22(4): e3002572, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38603542

ABSTRACT

The circadian clock controls behavior and metabolism in various organisms. However, the exact timing and strength of rhythmic phenotypes can vary significantly between individuals of the same species. This is highly relevant for rhythmically complex marine environments where organismal rhythmic diversity likely permits the occupation of different microenvironments. When investigating circadian locomotor behavior of Platynereis dumerilii, a model system for marine molecular chronobiology, we found strain-specific, high variability between individual worms. The individual patterns were maintained for several weeks. A diel head transcriptome comparison of behaviorally rhythmic versus arrhythmic wild-type worms showed that 24-h cycling of core circadian clock transcripts is identical between both behavioral phenotypes. While behaviorally arrhythmic worms showed a similar total number of cycling transcripts compared to their behaviorally rhythmic counterparts, the annotation categories of their transcripts, however, differed substantially. Consistent with their locomotor phenotype, behaviorally rhythmic worms exhibit an enrichment of cycling transcripts related to neuronal/behavioral processes. In contrast, behaviorally arrhythmic worms showed significantly increased diel cycling for metabolism- and physiology-related transcripts. The prominent role of the neuropeptide pigment-dispersing factor (PDF) in Drosophila circadian behavior prompted us to test for a possible functional involvement of Platynereis pdf. Differing from its role in Drosophila, loss of pdf impacts overall activity levels but shows only indirect effects on rhythmicity. Our results show that individuals arrhythmic in a given process can show increased rhythmicity in others. Across the Platynereis population, rhythmic phenotypes exist as a continuum, with no distinct "boundaries" between rhythmicity and arrhythmicity. We suggest that such diel rhythm breadth is an important biodiversity resource enabling the species to quickly adapt to heterogeneous or changing marine environments. In times of massive sequencing, our work also emphasizes the importance of time series and functional tests.


Subject(s)
Circadian Clocks , Drosophila Proteins , Humans , Animals , Drosophila Proteins/metabolism , Circadian Rhythm/genetics , Drosophila/metabolism , Circadian Clocks/genetics , Motor Activity , Drosophila melanogaster/metabolism
20.
PLoS One ; 19(4): e0299260, 2024.
Article in English | MEDLINE | ID: mdl-38558034

ABSTRACT

OBJECTIVE: Girls are more at risk than boys of the non-communicable diseases associated with insufficient levels of physical activity (PA), therefore it is important to explore the reasons why girls maintain or cease to be physically active. Maternal support plays an important role in girl's PA, yet the factors influencing mothers' support of their PA have received limited exploration. In response, the aim of this study was to explore, mothers' experiences of supporting their daughters to be physically active and their perceptions of the factors that might influence these experiences. METHOD: Semi-structured interviews were conducted with a purposive sample of mothers (n = 29) of girls (Mean age = 10.9 years; SD = 0.6). Reflexive Thematic Analysis was used to analyse the data, with themes mapped to the relevant domains of the Theoretical Domains Framework. RESULTS: Themes highlighted how mothers described providing PA support as an inherent part of their parental role and how their role was influenced by their own PA identity. Mothers recognised that the type and amount of support they provided was impacted by the community setting in which they lived. Mothers acknowledged how the role of others (e.g., partners, grandparents, peers) added a layer of complexity to supporting their daughters to be active. CONCLUSION: This study advances our understanding of maternal PA support behaviours recognising the complex interplay of individual, social and environmental factors. Additionally, the use of the Theoretical Domains Framework presents an in-depth behavioural diagnosis which can be used to inform future theory-based interventions to promote parent support of children's PA.


Subject(s)
Mothers , Nuclear Family , Male , Female , Child , Humans , Exercise , Motor Activity , Parents
SELECTION OF CITATIONS
SEARCH DETAIL
...